14 research outputs found

    The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling

    Get PDF
    The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples

    Preparatory study for the interpretation of the WISDOM GPR data selected aboard the ExoMars 2018 mission

    No full text
    La planĂšte Mars est devenue au cours de ces derniĂšres dĂ©cennies l’un des objets les plus visitĂ©s de notre systĂšme solaire. Les diffĂ©rents instruments envoyĂ©s pour l’étudier nous ont permis de reconstruire partiellement son histoire, et l’on sait aujourd’hui que dans son passĂ©, la planĂšte rouge a connu une pĂ©riode au climat relativement chaud et humide, permettant Ă  l’eau liquide de perdurer en surface et dans le sous-sol. Le parallĂšle avec les conditions sur Terre au moment supposĂ© de l’apparition de la vie nous amĂšne Ă  aborder Mars d’un point de vue exobiologique : si la vie a Ă©mergĂ© sur cette planĂšte, des traces potentielles sont susceptibles d’ĂȘtre trouvĂ©es dans le sous-sol, Ă  l’abri de la surface.La mission ExoMars, programmĂ©e pour 2018,enverra sur la surface de la planĂšte un rover Ă©quipĂ© d’une suite instrumentale complĂšte pour la recherche de traces de vie, passĂ© ou prĂ©sente,ainsi qu’une foreuse capable de prĂ©lever des Ă©chantillons jusqu’à 2 mĂštres de profondeur. La caractĂ©risation du contexte gĂ©ologique de la zone d’investigation du rover est primordiale pour identifier les lieux les plus propices Ă  la prĂ©servation de ces traces.Le radar Ă  pĂ©nĂ©tration de sol (Ground Penentrating Radar) WISDOM (Water Ice Subsurface Deposit Observation on Mars) avec ADRON sont les seuls instruments Ă  bord susceptibles d’obtenir des informations sur les caractĂ©ristiques du proche sous-sol le long du trajet du rover avant forage.Les donnĂ©es recueillies par le radar permettront d’identifier les formations gĂ©ologiques du sous solet de comprendre les processus qui en ont Ă©tĂ© Ă  l’origine. Cet instrument au fort potentiel,dĂ©veloppĂ© au LATMOS (Laboratoire ATmosphĂšres, Milieux, Observations Spatiales)en collaboration avec le LAB (Laboratoire d'Astrophysique de Bordeaux), est basĂ© sur le principe du step-frequency et fonctionne sur une large bande de frĂ©quences, entre 0,5 GHz et 3GHz : il a Ă©tĂ© conçu pour explorer les premiers mĂštres du sous-sol avec une rĂ©solution verticale de quelques centimĂštres, et est actuellement enphase de tests. L’objectif de cette thĂšse est de dĂ©velopper les outils d’interprĂ©tation des donnĂ©es du GPR WISDOM en tentant d'exploiter au mieux les ressources de l'instrument pour caractĂ©riser la nature et la structure du sous-sol,apporter des contraintes sur l’histoire gĂ©ologique du site d’Oxia Planum, sĂ©lectionnĂ© pour cette mission, et pour guider la foreuse d’Exo Marsvers des sites d’intĂ©rĂȘt d’un point de vue exobiologique. Ce travail nĂ©cessite donc une approche multiple, pratique et thĂ©orique, qui passe par le dĂ©veloppement d’outils de traitement de donnĂ©es, par la mise au point de modĂšles analytiques et l’utilisation de modĂšles numĂ©riques pour la modĂ©lisation de l’instrument,ou encore la dĂ©finition de tests et de campagnes de mesures, afin de crĂ©er une base de donnĂ©es sur des environnements variĂ©s, qui pourront ensuite ĂȘtre comparĂ©es aux donnĂ©es martiennes.Une interprĂ©tation complĂšte des donnĂ©es acquises avec WISDOM passe Ă©galement par l’estimation des paramĂštres diĂ©lectriques des diffĂ©rentes unitĂ©s gĂ©ologiques identifiĂ©es. Nous avons ainsi dĂ©veloppĂ© deux mĂ©thodes «quantitatives », qui permettent d’estimer la constante diĂ©lectrique en surface et Ă  diffĂ©rentes profondeurs Ă  partir des donnĂ©es. Une approche plus gĂ©omĂ©trique pour « reconstituer » le sous solle plus prĂ©cisĂ©ment possible, Ă©ventuellement en 3 dimensions, et pour comprendre les processus de dĂ©pĂŽts qui ont abouti Ă  la morphologie observĂ©e sur les radargrammes a Ă©galement Ă©tĂ© initiĂ©e. GrĂące Ă  la mise au point d’une mĂ©thode basĂ©e sur l’amplitude des signatures des diffuseurs en fonction de la configuration polarimĂ©trique des antennes, nous avons estimĂ© la position relative des objets par rapport au dĂ©placement du radar le long d’unprofil et ainsi permis la reconstitution du sous-solen 3 dimensions.Ceci permettra Ă  terme un guidage optimal de la foreuse dans le contexte d’ExoMars.Mars has become one of the most visited planet in the past few decades. The data collected by instruments allowed to infer theplanet evolution, and it is now admitted that inthe past, Mars had a relatively warm and wetenvironment, auspicious for the emergence oflife as we know it. This is why one of the currentobjective of the missions to Mars is to study theplanet from an exobiological point of view: iflife arose on Mars, potential traces could befound into the subsurface, sheltered from thehostile surface. The ExoMars 2018 space mission will land onMars’ surface a rover, which will be equippedwith a complete instrumental payload for thesearch of life traces, as well as a drill capable ofcollecting samples at a depth of 2 meters. Thegeological context characterization willtherefore be essential to identify the mostinteresting places for potential life tracespreservation. The Ground Penetrating Radar (GPR)WISDOM (Water Ice Subsurface DepositObservation on Mars) and the neutron detectorADRON will be the only instruments capable ofobtaining information about the shallowsubsurface before the drilling operations. Thedata collected by WISDOM will provide thegeological deposits identification, which willhelp reconstructing the local history of thelanding site. This instrument developed in theFrench laboratory LATMOS (LaboratoireATmosphĂšres, Milieux, Observations Spatiales)in collaboration with the LAB is a stepfrequencyradar that operates on a wide frequency band, from 0.5 GHz to 3 GHz: it wasdesigned to investigate the first 3 meters of thesubsurface with a vertical resolution of a fewcentimeters, and is currently tested in variousenvironments. This PhD thesis objective is to develop theinterpretation tools for WISDOM data by takingadvantage of the specific capacities of theinstrument to characterize the nature andstructure of the shallow subsurface, and to guidethe drill to suitable locations where potentialtraces of life could be preserved. This workconsequently requires both practical andtheoretical approaches, with the development ofprocessing chains, analytical and numericalmodels to simulate the instrument, but also todefine tests in well-known environments as wellas field tests in various natural places. The ideais to create a WISDOM database in a variety ofgeological contexts to allow the comparisonwith Martian data. A full interpretation of the WISDOM data alsorequires the estimation of the geological units’dielectric characteristics. We thereforedeveloped two “quantitative” methods thatallow the retrieval of the dielectric constantvalue at the surface and at various depths. Ageometrical approach to reconstruct the shallowsubsurface was also initiated to help tounderstand the deposits processes. A methodtaking advantage of the GPR specific antennasystem was developed to estimate the scatterers’relative position compared to the radar trajectoryalong profiles, allowing the subsurfacereconstruction in 3 dimensions for an optimalguidance of the ExoMars rover drill

    Étude prĂ©paratoire Ă  l'interprĂ©tation des donnĂ©es du radar WISDOM pour la mission ExoMars 2018

    No full text
    Mars has become one of the most visited planet in the past few decades. The data collected by instruments allowed to infer theplanet evolution, and it is now admitted that inthe past, Mars had a relatively warm and wetenvironment, auspicious for the emergence oflife as we know it. This is why one of the currentobjective of the missions to Mars is to study theplanet from an exobiological point of view: iflife arose on Mars, potential traces could befound into the subsurface, sheltered from thehostile surface. The ExoMars 2018 space mission will land onMars’ surface a rover, which will be equippedwith a complete instrumental payload for thesearch of life traces, as well as a drill capable ofcollecting samples at a depth of 2 meters. Thegeological context characterization willtherefore be essential to identify the mostinteresting places for potential life tracespreservation. The Ground Penetrating Radar (GPR)WISDOM (Water Ice Subsurface DepositObservation on Mars) and the neutron detectorADRON will be the only instruments capable ofobtaining information about the shallowsubsurface before the drilling operations. Thedata collected by WISDOM will provide thegeological deposits identification, which willhelp reconstructing the local history of thelanding site. This instrument developed in theFrench laboratory LATMOS (LaboratoireATmosphĂšres, Milieux, Observations Spatiales)in collaboration with the LAB is a stepfrequencyradar that operates on a wide frequency band, from 0.5 GHz to 3 GHz: it wasdesigned to investigate the first 3 meters of thesubsurface with a vertical resolution of a fewcentimeters, and is currently tested in variousenvironments. This PhD thesis objective is to develop theinterpretation tools for WISDOM data by takingadvantage of the specific capacities of theinstrument to characterize the nature andstructure of the shallow subsurface, and to guidethe drill to suitable locations where potentialtraces of life could be preserved. This workconsequently requires both practical andtheoretical approaches, with the development ofprocessing chains, analytical and numericalmodels to simulate the instrument, but also todefine tests in well-known environments as wellas field tests in various natural places. The ideais to create a WISDOM database in a variety ofgeological contexts to allow the comparisonwith Martian data. A full interpretation of the WISDOM data alsorequires the estimation of the geological units’dielectric characteristics. We thereforedeveloped two “quantitative” methods thatallow the retrieval of the dielectric constantvalue at the surface and at various depths. Ageometrical approach to reconstruct the shallowsubsurface was also initiated to help tounderstand the deposits processes. A methodtaking advantage of the GPR specific antennasystem was developed to estimate the scatterers’relative position compared to the radar trajectoryalong profiles, allowing the subsurfacereconstruction in 3 dimensions for an optimalguidance of the ExoMars rover drill.La planĂšte Mars est devenue au cours de ces derniĂšres dĂ©cennies l’un des objets les plus visitĂ©s de notre systĂšme solaire. Les diffĂ©rents instruments envoyĂ©s pour l’étudier nous ont permis de reconstruire partiellement son histoire, et l’on sait aujourd’hui que dans son passĂ©, la planĂšte rouge a connu une pĂ©riode au climat relativement chaud et humide, permettant Ă  l’eau liquide de perdurer en surface et dans le sous-sol. Le parallĂšle avec les conditions sur Terre au moment supposĂ© de l’apparition de la vie nous amĂšne Ă  aborder Mars d’un point de vue exobiologique : si la vie a Ă©mergĂ© sur cette planĂšte, des traces potentielles sont susceptibles d’ĂȘtre trouvĂ©es dans le sous-sol, Ă  l’abri de la surface.La mission ExoMars, programmĂ©e pour 2018,enverra sur la surface de la planĂšte un rover Ă©quipĂ© d’une suite instrumentale complĂšte pour la recherche de traces de vie, passĂ© ou prĂ©sente,ainsi qu’une foreuse capable de prĂ©lever des Ă©chantillons jusqu’à 2 mĂštres de profondeur. La caractĂ©risation du contexte gĂ©ologique de la zone d’investigation du rover est primordiale pour identifier les lieux les plus propices Ă  la prĂ©servation de ces traces.Le radar Ă  pĂ©nĂ©tration de sol (Ground Penentrating Radar) WISDOM (Water Ice Subsurface Deposit Observation on Mars) avec ADRON sont les seuls instruments Ă  bord susceptibles d’obtenir des informations sur les caractĂ©ristiques du proche sous-sol le long du trajet du rover avant forage.Les donnĂ©es recueillies par le radar permettront d’identifier les formations gĂ©ologiques du sous solet de comprendre les processus qui en ont Ă©tĂ© Ă  l’origine. Cet instrument au fort potentiel,dĂ©veloppĂ© au LATMOS (Laboratoire ATmosphĂšres, Milieux, Observations Spatiales)en collaboration avec le LAB (Laboratoire d'Astrophysique de Bordeaux), est basĂ© sur le principe du step-frequency et fonctionne sur une large bande de frĂ©quences, entre 0,5 GHz et 3GHz : il a Ă©tĂ© conçu pour explorer les premiers mĂštres du sous-sol avec une rĂ©solution verticale de quelques centimĂštres, et est actuellement enphase de tests. L’objectif de cette thĂšse est de dĂ©velopper les outils d’interprĂ©tation des donnĂ©es du GPR WISDOM en tentant d'exploiter au mieux les ressources de l'instrument pour caractĂ©riser la nature et la structure du sous-sol,apporter des contraintes sur l’histoire gĂ©ologique du site d’Oxia Planum, sĂ©lectionnĂ© pour cette mission, et pour guider la foreuse d’Exo Marsvers des sites d’intĂ©rĂȘt d’un point de vue exobiologique. Ce travail nĂ©cessite donc une approche multiple, pratique et thĂ©orique, qui passe par le dĂ©veloppement d’outils de traitement de donnĂ©es, par la mise au point de modĂšles analytiques et l’utilisation de modĂšles numĂ©riques pour la modĂ©lisation de l’instrument,ou encore la dĂ©finition de tests et de campagnes de mesures, afin de crĂ©er une base de donnĂ©es sur des environnements variĂ©s, qui pourront ensuite ĂȘtre comparĂ©es aux donnĂ©es martiennes.Une interprĂ©tation complĂšte des donnĂ©es acquises avec WISDOM passe Ă©galement par l’estimation des paramĂštres diĂ©lectriques des diffĂ©rentes unitĂ©s gĂ©ologiques identifiĂ©es. Nous avons ainsi dĂ©veloppĂ© deux mĂ©thodes «quantitatives », qui permettent d’estimer la constante diĂ©lectrique en surface et Ă  diffĂ©rentes profondeurs Ă  partir des donnĂ©es. Une approche plus gĂ©omĂ©trique pour « reconstituer » le sous solle plus prĂ©cisĂ©ment possible, Ă©ventuellement en 3 dimensions, et pour comprendre les processus de dĂ©pĂŽts qui ont abouti Ă  la morphologie observĂ©e sur les radargrammes a Ă©galement Ă©tĂ© initiĂ©e. GrĂące Ă  la mise au point d’une mĂ©thode basĂ©e sur l’amplitude des signatures des diffuseurs en fonction de la configuration polarimĂ©trique des antennes, nous avons estimĂ© la position relative des objets par rapport au dĂ©placement du radar le long d’unprofil et ainsi permis la reconstitution du sous-solen 3 dimensions.Ceci permettra Ă  terme un guidage optimal de la foreuse dans le contexte d’ExoMars

    Evaluation of the first simulation tool to quantitatively interpret the measurements of the ExoMars mission's Wisdom GPR

    No full text
    The Water Ice Sub-surface Deposits Observation on Mars (WISDOM) (500MHz - 3GHz) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. One of the main scientific objectives of the mission is to characterize the nature of the shallow sub-surface on Mars and WISDOM has been designed to explore the first 3 meters of the sub-surface with a vertical resolution of a few centimetres. Laboratory and field tests using the prototype developed for the ExoMars mission by LATMOS (Laboratoire AtmosphĂšre, Milieux, Observations Spatiales) in collaboration with the AOB (Bordeaux) and the university of Dresden (Germany) are regularly performed to assess and improve the radar performances. In order to quantitatively interpret the experimental data obtained, we developed a simulation tool based on ray-tracing. This code proves to be a fast practical way even if simplified to help radargrams interpretation. The WISDOM GPR, unlike most traditional GPRs, is operated approximately 30 centimetres above the surface. This configuration implies that the propagation between the antenna and the surface cannot be neglected especially because the instrument's aim is to characterise the very shallow subsurface. As a consequence, while we can draw advantage of this specific configuration by using the surface echo's amplitude to retrieve information about the top layer's roughness and permittivity value, precise location of buried reflector becomes more complicated. Indeed, the signature distinctive of individual reflectors buried in the sub-surface is not more an exact mathematical hyperbola. When the individual reflector is buried deep enough in the subsurface, the adjustment by an hyperbolic function still allows the retrieval of the reflector's location and the permittivity value of the surrounding medium. But in case of a reflector closer to the surface, the approximation is no longer valid. We propose a robust model adjustment that can be used for any reflector's depth. The physical assumptions taken into account are presented. Finally, results for different configurations and the validation of the limit conditions for which this adjustment method is reliable are shown. Preliminary analyzes on real data show the good performance of the method developed. Other modelling techniques will be considered to complete a full data interpretation taking the best from the instrument capacitie

    Performance validation of the ExoMars 2018 WISDOM GPR in ice caves, Austria

    No full text
    International audienceThe WISDOM (Water Ice Subsurface Deposits Observations on Mars) Ground Penetrating Radar has been selected to be part of the ExoMars 2018 exobiological rover mission. A prototype has been tested during the Mars Simulation organized by the Austrian Space Forum in Alpine ice caves in Dachstein, Austria. This campaign provided the opportunity to validate methods developed to process WISDOM’s data in a well-documented environment and to retrieve geometrical and quantitative information about the 3D structure and the electromagnetic properties of the subsurface. We estimate the ice thickness in different locations inside the ice caves, and show that this ice is formed of fine strata with different properties. Data analysis allows reconstructing the bedrock in a 3D environment where a complete survey was performed

    Geophysical and geochemical methods applied to investigate fissure-related hydrothermal systems on the summit area of Mt. Etna volcano (Italy)

    No full text
    International audienceA multidisciplinary approach integrating self-potential, soil temperature, heat flux, CO2 efflux and gravity gradiometry signals was used to investigate a relatively small fissure-related hydrothermal system near the summit of Mt. Etna volcano (Italy). Measurements were performed through two different surveys carried out at the beginning and at the end of July 2009, right after the end of the long-lived 2008-2009 flank eruption and in coincidence with an increase in diffuse flank degassing related to a reactivation of the volcano, leading to the opening of a new summit vent (NSEC). The main goal was to use a multidisciplinary approach to the detection of hidden fractures in an area of evident near-surface hydrothermal activity. Despite the different methodologies used and the different geometry of the sampling grid between the surveys, all parameters concurred in confirming that the study area is crossed by faults related with the main fracture systems of the south flank of the volcano, where a continuous hydrothermal circulation is established. Results also highlighted that hydrothermal activity in this area changed both in space and in time. These changes were a clear response to variations in the magmatic system, notably to migration of magma at various depth within the main feeder system of the volcano. The results suggest that this specific area, initially chosen as the optimal test-site for the proposed approach, can be useful in order to get information on the potential reactivation of the summit craters of Mt. Etna

    Subsurface characterization by the ground penetrating radar WISDOM/ExoMars 2020

    No full text
    International audienceThe main objective of the ExoMars 2020 mission is to search for signs of past and/or present life on Mars. Toward this goal, a rover was designed to investigate the shallow subsurface which is the most likely place where signs of life may be preserved, beneath the hostile surface of Mars. The rover of the ExoMars 2020 mission has on board a polarimetric ground penetrating radar called WISDOM (Water Ice Subsurface Deposits Observation on Mars). Thanks to its large frequency bandwidth of 2.5 GHz, WISDOM is able to probe down to a depth of approximately 3 m on sedimentary rock with a vertical resolution of a few centimeters.The main scientific objectives of WISDOM are to characterize the shallow subsurface of Mars, to help understand the local geological context and to identify the most promising location for drilling.The WISDOM team is currently working on the preparation of the scientific return of the ExoMars 2020 mission. In particular, tools are developed to interpret WISDOM experimental data and, more specifically, to extract information from the radar signatures of expected buried reflectors.Insights into the composition of the ground (through the retrieval of its permittivity) and the geological context of the site can be inferred from the radar signature of buried rocks since the shape and the density of rocks in the subsurface is related to the geological processes that have shaped and placed them there (impact, fluvial processes, volcanism).This paper presents results obtained by automatic detection of structures of interest on a radargram, especially radar signature of buried rocks. The algorithm we developed uses a neural network to identify the position of buried rocks/blocs and then a Hough transform to characterize each signature and to estimate the local permittivity of the medium. Firstly, we will test the performances of the algorithm on simulated data constructed with a 3D FDTD code. This code allows us to simulate radar operation in realistic environments. Secondly, we will test our algorithm on experimental data acquired in a semi-controlled environment. Lastly, we will present experimental data acquired during a recent field campaign (July 2017) in the south of France and we will validate our method and illustrate the ability of WISDOM to provide clues about the geological context of a site

    Modelling the performances of the WISDOM radar on the Oxia Planum potential landing site for ExoMars

    Get PDF
    International audienceThe search for evidence of past or present life is the main objective of the ESA-Roscosmos ExoMars rover mission [1]. The rover will be equipped with a suite of instruments dedicated to the investigation and characterization of the surface and shallow subsurface of Mars. In particular, a drill will provide, for the first time, ground samples from a depth of approximately 2 meters and a Ground Penetrating Radar named WISDOM (Water Ice Subsurface Deposit Observations on Mars) will map the shallow subsurface down to a depth of a few meters revealing its stratigraphy and structure, and thus providing invaluable insights into its origin and geological history. A review of the candidate sites for the ExoMars rover mission has been conducted and four landing sites have been preselected [2] among which the Oxia Planum site (Fig. 1)

    WISDOM GPR Investigations of Ice Thickness, Stratigraphy, Structure and Basal Topography in an Alpine Ice Cave in Dachstein, Austria

    No full text
    Prototypes of the WISDOM GPR designed for the ExoMars rover mission have been tested in an ice cave.The experimental results show the instrument performance

    Wisdom GPR measurements in a cold artificial and controlled environment

    No full text
    International audienceThe WISDOM (500MHz - 3GHz) GPR is one of the instruments that have been selected as part of the Pasteur payload of ESA's 2018 ExoMars Rover mission. One of the main scientific objectives of the mission is to characterize the nature of the shallow sub-surface on Mars and WISDOM has been designed to explore the first ∌ 3 meters of the sub-surface with a vertical resolution of a few centimetres. In order to illustrate and quantify the WISDOM performance, measurements in cold artificial and controlled conditions have been performed by the prototype. The objectives of this experiment were the detection of home made internal layering and the possible detection of a wedge included in the permafrost filled with different material with known characteristics. Some results and comparisons with a simple simulation are presented here and show the WISDOM performances
    corecore